Generación del movimiento

MOTOR

Un motor es la parte sistemática de una máquina capaz de hacer funcionar el sistema, transformando algún tipo de energía (eléctrica, decombustibles fósiles, etc.), en energía mecánica capaz de realizar un trabajo. En los automóviles este efecto es una fuerza que produce el movimiento.
Existen diversos tipos, siendo de los más comunes los siguientes:
En los aerogeneradores, las centrales hidroeléctricas o los reactores nucleares también se transforma algún tipo de energía en otro. Sin embargo, la palabra motor se reserva para los casos en los cuales el resultado inmediato es energía mecánica.
Los motores eléctricos utilizan la inducción electromagnética que produce la electricidad para producir movimiento, según sea la constitución del motor: núcleo con cable arrollado, sin cable arrollado, monofásico, trifásico, con imanes permanentes o sin ellos; la potencia depende del calibre del alambre, las vueltas del alambre y la tensión eléctrica aplicada.

Características generales: 

  • Rendimiento: es el cociente entre la potencia útil que generan y la potencia absorbida. Habitualmente se representa con la letra griega η.
  • Velocidad de poco giro o velocidad nominal: es la velocidad angular del cigüeñal, es decir, el número de revoluciones por minuto(rpm o RPM) a las que gira. Se representa por la letra n.
  • Potencia: es el trabajo que el motor es capaz de realizar en la unidad de tiempo a una determinada velocidad de giro. Se mide normalmente en caballos de vapor (CV), siendo 1 CV igual a 736 vatios.
  • Par motor: es el momento de rotación que actúa sobre el eje del motor y determina su giro. Se mide en kg*m (kilogramos por metro) o lo que es lo mismo newtons-metro (Nm), siendo 1 kgm igual a 9,81 Nm (9,81 kg*f*m). Hay varios tipos de pares, véanse por ejemplo el par de arranque, el par de aceleración y el par nominal.
  • Estabilidad:es cuando el motor se mantiene a altas velocidades sin gastar demasiado combustible tanto como energía eléctrica en sus correspondiente tiempo que pasa el motor sin ningún defecto pero esto solo se hace en las fábricas donde se desarrolla el motor.


MOTOR DE COMBUSTIÓN INTERNA

 Un motor de combustión internamotor a explosión o motor a pistón, es un tipo de máquina que obtiene energía mecánica directamente de la energía química de un combustible que arde dentro de la cámara de combustión. Su nombre se debe a que dicha combustión se produce dentro de la propia máquina, a diferencia de, por ejemplo, la máquina de vapor.






Historia
La invención se puede remontar a dos italianos: el padre Eugenio Barsanti, un sacerdote escolapio, y Felice Matteucci, ingeniero hidráulico y mecánico, que ya en 1853 detallaron documentos de operación y construcción y patentes pendientes en varios países europeos como Gran Bretaña, Francia, Italia y Alemania.
Los primeros prototipos carecían de la fase de compresión; es decir, la fase de succión terminaba prematuramente con el cierre de la válvula de admisión antes de que el pistón llegase a la mitad, lo que provocaba que la chispa que generaba la combustión que empuja la carrera del pistón fuese débil. Como consecuencia el funcionamiento de estos primeros motores era deficiente. Fue la fase de compresión la que dio una eficiencia significativa al motor de combustión interna, que lograría el reemplazo definitivo de los motores a vapor e impulsaría el desarrollo de los automóviles, ya que lograba desarrollar una potencia igual o mayor en dimensiones considerablemente mucho más reducidas.
Las primeras aplicaciones prácticas de los motores de combustión interna fueron los motores fuera de borda. Esto fue debido a que el principal impedimento para la aplicación práctica del motor de combustión interna en vehículos terrestres era el hecho de que, a diferencia de la máquina de vapor, no podía comenzar desde parado. Los motores marinos no sufren este problema, ya que las hélices son libres de un significativo momento de inercia.
El motor tal como lo conocemos hoy fue desarrollado por el alemán Nikolaus Otto, quien en 1886 patentó el diseño de un motor de combustión interna a cuatro tiempos, basado en los estudios del inventor francés Alphonse Beau de Rochas de 1862, que a su vez se basó en el modelo de combustión interna de Barsanti y Matteucci.

Aplicaciones mas comunes:
Las diferentes variantes de los dos ciclos, tanto en diésel como en gasolina, tienen cada uno su ámbito de aplicación.
  • 2T gasolina: tuvo gran aplicación en las motocicletas, motores de ultraligeros (ULM) y motores marinos fuera-borda hasta una cierta cilindrada, habiendo perdido mucho terreno en este campo por las normas anticontaminación. Además de que en las cilindradas mínimas de ciclomotores y scooters (50 cc) o un poco más grandes de motocicletas de competencia y motocross, sólo motores muy pequeños como motosierras y pequeños grupos electrógenos siguen llevándolo (2015).
  • 4T gasolina: domina en las aplicaciones en motocicletas de todas las cilindradas, automóviles, aviación deportiva y fuera borda.
  • 2T diésel: domina en las aplicaciones navales de gran potencia, hasta 100000 CV hoy día, y tracción ferroviaria. En su momento de auge se usó en aviación con cierto éxito.
  • 4T diésel: domina en el transporte terrestre, automóviles y aplicaciones navales hasta una cierta potencia. Empieza a aparecer en la aviación deportiva.



Estructura y Funcionamiento:
Los motores Otto y los diésel tienen los mismos elementos principales: (bloquecigüeñalbielapistónculataválvulas) y otros específicos de cada uno, como la bomba inyectora de alta presión en los diésel, o antiguamente el carburador en los Otto.
En los 4T es muy frecuente designarlos mediante su tipo de distribución: SVOHVSOHCDOHC. Es una referencia a la disposición del (o los) árbol de levas.

Cámara de combustión

La cámara de combustión es un cilindro, por lo general fijo, cerrado en un extremo y dentro del cual se desliza un pistón muy ajustado al cilindro. La posición hacia dentro y hacia fuera del pistón modifica el volumen que existe entre la cara interior del pistón y las paredes de la cámara. La cara exterior del pistón está unida por una biela al cigüeñal, que convierte en movimiento rotatorio el movimiento lineal del pistón.
En los motores de varios cilindros, el cigüeñal tiene una posición de partida, llamada espiga de cigüeñal y conectada a cada eje, con lo que la energía producida por cada cilindro se aplica al cigüeñal en un punto determinado de la rotación. Los cigüeñales cuentan con pesados volantes y contrapesos cuya inercia reduce la irregularidad del movimiento del eje. Un motor alternativo puede tener de 1 a 28 cilindros.

Sistema de alimentación

El sistema de alimentación de combustible de un motor Otto consta de un depósito, una bomba de combustible y un dispositivo dosificador de combustible que vaporiza o atomiza el combustible desde el estado líquido, en las proporciones correctas para poder ser quemado. Se llama carburador al dispositivo que hasta ahora venía siendo utilizado con este fin en los motores Otto. Ahora los sistemas de inyección de combustible lo han sustituido por completo por motivos medioambientales. Su mayor precisión en la dosificación de combustible inyectado reduce las emisiones de CO2, y asegura una mezcla más estable. En los motores diésel se dosifica el combustible gasoil de manera no proporcional al aire que entra, sino en función del mando de aceleración y el régimen motor (mecanismo de regulación) mediante unabomba inyectora de combustible.
En los motores de varios cilindros el combustible vaporizado se lleva a los cilindros a través de un tubo ramificado llamado colector de admisión. La mayor parte de los motores cuentan con un colector de escape o de expulsión, que transporta fuera del vehículo y amortigua el ruido de los gases producidos en la combustión

Sistema de distribución


Cada cilindro toma el combustible y expulsa los gases a través de válvulas de cabezal o válvulas deslizantes. Un muelle mantiene cerradas las válvulas hasta que se abren en el momento adecuado, al actuar las levas de un árbol de levas rotatorio movido por el cigüeñal, estando el conjunto coordinado mediante la cadena o la correa de distribución. Ha habido otros diversos sistemas de distribución, entre ellos la distribución por camisa corredera (sleeve-valve).

Encendido

Los motores necesitan una forma de iniciar la combustión del combustible dentro del cilindro. En los motores Otto, el sistema de encendido consiste en un componente llamado bobina de encendido, que es un auto-transformador de alto voltaje al que está conectado un conmutador que interrumpe la corriente del primario para que se induzca un impulso eléctrico de alto voltaje en el secundario.
Dicho impulso está sincronizado con el tiempo de compresión de cada uno de los cilindros; el impulso se lleva al cilindro correspondiente (aquel que está en compresión en ese momento) utilizando un distribuidor rotativo y unos cables que llevan la descarga de alto voltaje a la bujía. El dispositivo que produce el encendido de la mezcla combustible/aire es la bujía, que, instalada en cada cilindro, dispone de electrodos separados unas décimas de milímetro, el impulso eléctrico produce una chispa en el espacio entre un electrodo y otro, que inflama el combustible; hay bujías con varios electrodos, bujías que usan el proceso de 'descarga de superficie' para producir la chispa, y 'bujías incandescentes ' (Glow-plug).
Si la bobina está en mal estado se recalienta; eso produce pérdidas de energía, reduce la chispa de las bujías y causa fallos en el sistema de encendido del automóvil. De los sistemas de generación de electricidad en los motores, las magnetos dan un bajo voltaje a pocas rpm, aumentando el voltaje de la chispa al aumentar las rpm, mientras los sistemas con batería dan una buena chispa a bajas rpm, pero la intensidad de la chispa baja al aumentar las rpm.

Refrigeración
Dado que la combustión produce calor, todos los motores deben disponer de algún tipo de sistema de refrigeración. Algunos motores estacionarios de automóviles y de aviones, y los motores fueraborda, se refrigeran con aire. Los cilindros de los motores que utilizan este sistema cuentan en el exterior con un conjunto de láminas de metal que emiten el calor producido dentro del cilindro. En otros motores se utiliza refrigeración por agua, lo que implica que los cilindros se encuentran dentro de una carcasa llena de agua que en los automóviles se hace circular mediante una bomba. El agua se refrigera al pasar por las láminas de un radiador. Es importante que el líquido que se usa para enfriar el motor no sea agua común y corriente porque los motores de combustión trabajan regularmente a temperaturas más altas que la temperatura de ebullición del agua. Esto provoca una alta presión en el sistema de enfriamiento dando lugar a fallas en los empaques y sellos de agua, así como en el radiador; se usa un refrigerante, pues no hierve a la misma temperatura que el agua, sino a más alta temperatura, y que tampoco se congela a temperaturas muy bajas.
Otra razón por la cual se debe usar un refrigerante es que éste no produce sarro ni sedimentos que se adhieran a las paredes del motor y del radiador formando una capa aislante que disminuiría la capacidad de enfriamiento del sistema. En los motores navales se utiliza agua del mar para la refrigeración.

Sistema de arranque

Al contrario que los motores y las turbinas de vapor, los motores de combustión interna no producen un par de fuerzas cuando arrancan (véase Momento de fuerza), lo que implica que debe provocarse el movimiento del cigüeñal para que se pueda iniciar el ciclo. Los motores de automoción utilizan un motor eléctrico (el motor de arranque) conectado al cigüeñal por un embrague automático que se desacopla en cuanto arranca el motor. Por otro lado, algunos motores pequeños se arrancan a mano girando el cigüeñal con una cadena o tirando de una cuerda que se enrolla alrededor del volante del cigüeñal.
Otros sistemas de encendido de motores son los iniciadores de inercia, que aceleran el volante manualmente o con un motor eléctrico hasta que tiene la velocidad suficiente como para mover el cigüeñal. Ciertos motores grandes utilizan iniciadores explosivos que, mediante la explosión de un cartucho mueven una turbina acoplada al motor y proporcionan el oxígeno necesario para alimentar las cámaras de combustión en los primeros movimientos. Los iniciadores de inercia y los explosivos se utilizan sobre todo para arrancar motores de aviones.






CORREA DE DISTRIBUCIÓN

La correa de distribución, banda de distribución o dentada, es uno de los más comunes métodos de transmisión de la energía mecánicaentre un piñón de arrastre y otro arrastrado, mediante un sistema de dentado mutuo que posee tanto la correa como los piñones, impidiendo su deslizamiento mutuo. Se emplea muy frecuentemente en motores Otto y diésel de 4 tiempos entre el cigüeñal y el árbol de levas, en motores de motocicletas y maquinaria industrial, de forma general, es una correa de goma que normalmente enlaza un generador de movimiento con un receptor de la misma por medio de poleas o piñones.




Funcionamiento:
En automoción, usada en muchos motores de 4 tiempos tanto diesel como gasolina, la correa de distribución transmite el movimiento desde el cigüeñal al árbol de levas, con una relación de transmisión o de desmultiplicación de 1 : 2, es decir el árbol de levas gira a la mitad de revoluciones que el cigueñal. Va montada sobre unas ruedas dentadas llamadas piñones. La función de esta correa es sincronizar los 4 tiempos del motor, la apertura y cierre de las válvulas de admisión y escape y la función del encendido del motor ya sea la chispa de la bujíao la sincronización de los inyectores diesel. Su forma, material, longitud y ubicación varían dependiendo del tipo de motor. En muchos casos arrastra también la bomba de refrigerante y / o la bomba de aceite del motor. Hay motores que poseen más de una correa, por ejemplo para ejes contrarrotantes antivibratorios.
La correa de distribución, o correa dentada, debe sustituirse periódicamente dependiendo del uso, ya que el desgaste que se produce en ésta puede provocar daños graves en la culata, especialmente las válvulas, e incluso en los pistones. En los motores diesel de bomba rotativa está sometida a mucho más trabajo por las compresiones/descompresiones cíclicas del gasoil; esta circunstancia se ha eliminado con las bombas de alta de los sistemas Common-Rail.





ÁRBOL DE LEVAS


Un árbol de levas es un mecanismo formado por un eje en el que se colocan distintas levas, que pueden tener distintas formas y tamaños, y están orientadas de diferente manera, para activar diferentes mecanismos a intervalos repetitivos, como por ejemplo unas válvulas, es decir constituye un temporizador mecánico cíclico, también denominado Programador mecánico.

En un motor controla la apertura y el cierre de las válvulas de admisión y escape, para desplazar las válvulas de sus asientos se utilizan una serie de levas, tantas como válvulas tenga el motor. Dichas levas van mecanizadas en un eje, con el correspondiente ángulo de desfase para efectuar la apertura de los distintos cilindros, según el orden de funcionamiento establecido.



Descripción

El árbol de levas consta de un eje que posee una serie de elementos, entre los cuales se cuentan los camones o levas ya citados, los cuales son prominencias del árbol con un tramo curvilíneo (Llamado "cresta" del camón) que es el que actúa sobre el taqué. Además de las levas, el árbol de levas lleva mecanizados una serie de muñones de apoyo sobre los que gira, cuyo número varía en función del esfuerzo a transmitir. Sobre el mismo árbol, sobre todo en motores antiguos, va situada una excéntrica para el accionamiento de la bomba de combustible, y el piñón de arrastre para el mando del distribuidor de encendido en los motores de gasolina. ya que el árbol de levas es un mecanismo de entrada y salida de gases mediante válvulas.
El árbol gira sobre cojinetes de fricción o bien sobre taladros de apoyo practicados directamente sobre el material de la culata. Está lubricado mediante el circuito de lubricación, a través de conductos que llegan a cada uno de los apoyos. Los árboles de levas se fabrican en una sola pieza de hierro fundido o de acero forjado, debe tener gran resistencia a la torsión y al desgaste, para ello, se le da un tratamiento de templado. El desgaste del árbol de levas puede suponer una modificación del diagrama de distribución, redundando en una disminución del rendimiento del motor.


Aplicación
Los usos de los árboles de levas son muy variados, como en molinostelares, sistemas de distribución de agua o martillos hidráulicos, aunque su aplicación más desarrollada es la relacionada con el motor de combustión interna alternativo, en los que se encarga de regular tanto la carrera de apertura y el cierre de las válvulas, como la duración de esta fase de apertura, permitiendo la renovación de la carga en las fases de admisión y escape de gases en los cilindros.
Su fabricación puede ser en procesos de fundición (casting Iron), forja, árboles ensamblados, suelen someterse a acabados superficiales de tratamientos térmicos, Austemperizado, cementado por citar algunos. Que sirven para endurecer la superficie del árbol pero no su núcleo, y posteriormente son maquinados para dar los acabados finales y la precisión requerida.

Funcionamiento
Dependiendo de la colocación del árbol de levas y la distribución de estas, accionarán directamente las válvulas a través de una varilla como en la primera época de los motoresOtto, sistema SV o lo harán mediante un sistema de varillas, taqués y balancines, es el sistema OHV. Posteriormente, sobre todo desde la aparición de los motores diésel, el árbol de levas ha pasado a la culata, es el llamado sistema SOHC.
En el pasado, cuando los motores no eran tan fiables como hoy, esto resultaba problemático, pero en los modernos motores de 4 tiempos diésel o gasolina, el sistema de levas "elevado", donde el árbol de levas está en la culata, es lo más común.
Algunos motores usan un árbol de levas para las válvulas de admisión y otro para las de escape; esto es conocido como dual overhead camshaft o doble árbol de levas a la cabeza DOHC. Así, los motores en V pueden tener 4 árboles de levas. El sistema DOHC permite entre otras cosas montar 2 válvulas de escape y 2 de admisión, en los 4 cilindros es lo que se llama "16 válvulas".
Aunque se aplican en otros mecanismos, su uso más popular se relaciona con los motores de combustión interna, en los cuales permite regular la apertura y el cierre de las válvulas, algo que nada más y nada menos facilita el ingreso y salida de gases en los cilindros.




Localización del árbol de levas y disposición de las válvulas en el cilindro


Los sistemas de distribución se pueden clasificar dependiendo de la localización del árbol de levas. Hasta la década de 1980 los motores tenían una configuración del árbol de levas ubicado en el bloque motor. En la actualidad, prácticamente todos los motores poseen el árbol de levas montado en la tapa de cilindro. Las válvulas pueden ir dispuestas de varias maneras respecto del cilindro, pero hay dos ubicaciones principales: laterales o en la culata.
  • Sistema SV: También deniminado "de válvulas laterales". En este sistema la válvula se ubica en una posición lateral al cilindro, es decir, está alojada en el bloque. El mando de esta válvula se efectúa con el árbol de levas situado en el bloque motor. Este sistema de distribución no se utiliza desde hace tiempo por dos inconvenientes principales: Obliga a que la cámara de compresión tenga que ser mayor, y el tamaño de las cabezas de las válvulas se vea limitado por el poco espacio de que dispone.
  • Sistema OHV: Se distingue por poseer el árbol de levas en el bloque motor (Generalmente en el sector inferior) y las válvulas dispuestas en la culata. En este sistema la transmisión de movimiento del cigueñal al árbol de levas se hace directamente por medio de dos piñones o con la interposición de un tercero, también se puede hacer por medio de una cadena de corta longitud. La ventaja de este sistema es que la transmisión de movimiento entre el cigueñal y el eje de camones necesita un mantenimiento nulo o cada muchos kilómetros. La desventaja viene dada por el elevado número de elementos que componen este sistema para compensar la distancia existente entre el árbol de levas y las válvulas. Este inconveniente influye sobre todo a altas revoluciones del motor, lo cual supone un límite en el número de revoluciones que estos motores pueden llegar a alcanzar. Este sistema se ve muy influenciado por la temperatura del motor, lo que hace necesario una holgura considerable en los taqués.
  • Sistema OHC: Se distingue por tener el árbol de levas en la culata al igual que las válvulas. Es el sistema más utilizado en la actualidad en todos los automóviles. La ventaja de este sistema es que se reduce considerablemente el número de elementos entre el árbol de levas y las válvulas por lo que la apertura y el cierre de las válvulas es más precisa. Esto trae consigo que los motores puedan alcanzar mayor número de revoluciones. Tiene la desventaja de complicar la transmisión de movimiento del cigueñal, ya que se necesitan correas o cadenas de distribución de mayor longitud, que con el uso se van desgastando en mayor medida, necesitando más mantenimiento. Este sistema es en general más caro y complejo pero resulta mucho más efectivo y se obtiene un mayor rendimiento del motor.
Dentro del sistema OHC existen dos variantes:
  • SOHC: Está compuesto por un sólo árbol de levas que acciona las válvulas de admisión y escape.
  • DOHC: Está compuesto por dos árboles de levas, uno accionando las válvulas de admisión y el otro accionando las de escape









 

No hay comentarios:

Publicar un comentario